J.K. SHAH CLASSES

MATHEMATICS & STATISTICS

CONTINUITY +

TOPIC : REGRESSION SYJC TEST - 02 - SET 2 DURATION - $1^{1}/_{2}$ HR

MARKS - 40

SOLUTION SET **SECTION - I**

Ŋ-1

01.	f(x)	$= \sqrt{4 + x} - 2$;	x ≠ 0
		3x		
		= 1/4	;	x = 0

Discuss continuity at x = 0

SOLUTION:

STEP 1

Lim f(x) $x \rightarrow 0$

- $= \lim_{x \to 0} \frac{\sqrt{4 + x} 2}{3x}$ $x \rightarrow 0$
- = Lim $\sqrt{4 + x} 2$ $\sqrt{4 + x} + 2$ x $\rightarrow 0$ 3x $\sqrt{4 + x} + 2$
- $= \lim_{x \to 0} \frac{4 + x 4}{3x} \frac{1}{\sqrt{4 + x + 2}}$
- = Lim x ≠ 0
- $= \lim_{x \to 0} \frac{1}{3} \frac{1}{\sqrt{4 + x + 2}}$
- $\frac{1}{3}$ $\frac{1}{\sqrt{4+0}+2}$ =
- $\frac{1}{3} \frac{1}{2+2}$ =

=

STEP 2:

f(0) = 1/4 given

 $\frac{1}{12}$

STEP 3:

 $f(0) \neq \text{Lim } f(x)$; f is discontinuous at x = 0 $x \rightarrow 0$

STEP 4 :

REMOVABLE DISCONTINUITY

f can be made continuous at x = 0 by redefining it as

$$f(x) = \frac{\sqrt{4 + x} - 2}{3x} ; x \neq 0$$

= 1/12 ; x = 0

02.
$$f(x) = \frac{\log(1 + 3x)}{5x}$$
; $x \neq 0$
= k; $x = 0$

find k if the f is continuous at x = 0

SOLUTION:

STEP 1

Lim f(x) $x \rightarrow 0$

= Lim log (1 + 3x) $x \rightarrow 0$ 5x

Lim $3 \log(1 + 3x)$ = $x \rightarrow 0$ 5 3x

STEP 2:

=

f(0) = k given

STEP 3 :

Since the f is continuous at x = 0 \ f(0) = Lim f(x) $x \rightarrow 0$ = 3/5 k

03. $f(x) = \frac{a^{2x} - 1}{x}$; $x \neq 0$ $= 2\log a$; x = 0Discuss continuity at x = 0

`

SOLUTION :

STEP 1

 $\begin{array}{ll} \text{Lim} & f(x) \\ x \rightarrow 0 \end{array}$

 $= \lim_{x \to 0} \frac{a^{2x} - 1}{x}$

 $= \lim_{x \to 0} 2 \frac{a^{2x} - 1}{2x}$

= 2.loga

STEP 2 :

f(0) = 2.loga given

STEP 3 :

 $f(0) = \lim_{x \to 0} f(x)$ $\therefore f \text{ is continuous at } x = 0$

04.
$$f(x) = \frac{x\cos x + 3\tan x}{x^2 + \sin x}$$
; $x \neq 0$
$$= 6$$
; $x = 0$
Discuss continuity at $x = 0$

SOLUTION:

STEP 1

 $\begin{array}{ll} \text{Lim} & f(x) \\ x \rightarrow 0 \end{array}$

= Lim $x \rightarrow 0$ $\frac{x \cos x + 3 \tan x}{x^2 + \sin x}$

Divide Numerator & Denominator by x , x \neq 0

$$= \lim_{x \to 0} \frac{\frac{x \cos x + 3 \tan x}{x}}{\frac{x^2 + \sin x}{x}}$$

 $= \lim_{x \to 0} \frac{\frac{x \cos x}{x} + 3 \frac{\tan x}{x}}{\frac{x^2}{x} + \frac{\sin x}{x}}$

$= \text{Lim} \qquad \underbrace{\cos x + 3 \tan x}_{x}$
$x \rightarrow 0$ $x + \frac{\sin x}{x}$
$= \frac{\cos 0 + 3(1)}{(0) + 1}$
= 1 + 3
= 4 STEP 2 :
f(0) = 6 given
STEP 3:
f(0) ≠ Lim f(x) x→0
$\therefore f \text{ is discontinuous at } x = 0$

STEP 4 :

REMOVABLE DISCONTINUITY

f can be made continuous at x = 0 by redefining it as

$$f(x) = \frac{x\cos x + 3\tan x}{x^2 + \sin x} ; x \neq 0$$
$$= 4 ; x = 0$$

Q2. Attempt any TWO of the following (3 marks each) (6 marks) 01. $f(x) = \frac{x^2 + 5}{x - 1}$; $1 < x \le 2$ = kx + 1; x > 2

if f is continuous at x = 2; find k

SOLUTION :

STEP 1

 $\lim_{x \to 2^{-}} f(x)$ $= \lim_{x \to 2^{-}} \frac{x^2 + 5}{x - 1}$

 $= \frac{2^2 + 5}{2 - 1} = 9$

STEP 2

 $\begin{array}{ll} \text{Lim} & f(x) \\ x \rightarrow 2 + \end{array}$

- $= \lim_{x \to 2} kx + 1$
- = k(2) + 1
- = 2k + 1

STEP 3

 $f(2) = \frac{2^2 + 5}{2 - 1} = 9$

STEP 4

Since f is continuous at x = 2

Lim
$$f(x) = Lim f(x) = f(2)$$

 $x \rightarrow 2 x \rightarrow 2+$

9 = 2k + 1 = 9
2k + 1 = 9
2k = 8
k = 4

02. $f(x) = \frac{10^x - 5^x - 2^x + 1}{x^2}$; $x \neq 0$ = log 10; x = 0Discuss continuity at x = 0

SOLUTION :

STEP 1

 $\begin{array}{ll} \text{Lim} & f(x) \\ x \rightarrow 0 \end{array}$

- $= \lim_{x \to 0} \frac{10^{x} 5^{x} 2^{x} + 1}{x^{2}} \qquad Q 2$
- = Lim $x \to 0$ $(5.2)^{x} - 5^{x} - 2^{x} + 1$ x^{2}

= Lim
$$5^{x} \cdot 2^{x} - 5^{x} - 2^{x} + 1$$

 $x \to 0$ x^{2}

= Lim
$$5^{x}(2^{x}-1) - 1(2^{x}-1)$$

 $x \to 0$ x^{2}

- = Lim (5^x 1). (2^x 1) x \to 0 x²
- $= \lim_{x \to 0} \frac{5^x 1}{x} \cdot \frac{2^x 1}{x}$
- = log 5 . log 2

STEP 2:

f(0) = log 10 given

STEP 3 :

 $f(0) \neq \lim_{x \to 0} f(x)$ $\therefore f \text{ is discontinuous at } x = 0$

STEP 4 :

REMOVABLE DISCONTINUITY

f can be made continuous at x = 0 by redefining it as

$$f(x) = \frac{10^{x} - 5^{x} - 2^{x} + 1}{x^{2}} ; x \neq 0$$
$$= \log 5 . \log 2 ; x = 0$$

03.
$$f(x) = \frac{\tan x - \sin x}{x^3}$$
; $x \neq 0$

find f(0) if f is continuous at x = 0

STEP 1

$$Lim f(x)$$

$$x \rightarrow 0$$

$$= Lim tanx - sinx$$

$$x \rightarrow 0 x^{3}$$

$$= \lim_{x \to 0} \frac{\sin x}{\frac{\cos x}{x^3}} - \sin x}{\frac{x^3}{x^3}}$$

$$= \lim_{x \to 0} \frac{\sin x - \sin x \cdot \cos x}{\cos x \cdot x^3}$$

$$= \lim_{x \to 0} \frac{\sin x (1 - \cos x)}{\cos x \cdot x^3}$$

$$= \lim_{x \to 0} \frac{\tan x}{x} \cdot 2\sin^2 \frac{x}{2}}{\frac{2}{x^2}}$$

$$= \lim_{x \to 0} \frac{\tan x}{x} \cdot 2\sin^2 \frac{x}{2}}{\frac{2}{x^2}}$$

$$= \lim_{x \to 0} \frac{\tan x}{x} \cdot 2\left(\frac{\sin x}{2}\right)^2$$

$$= \lim_{x \to 0} \frac{\sin x}{x} \cdot 2\left(\frac{\sin x}{2}\right)^2$$

$$= \lim_{x \to 0} \frac{\sin x}{x} \cdot 2\left(\frac{1}{2} \frac{\sin x}{2}\right)^2$$

$$= \lim_{x \to 0} \frac{1}{x} \cdot 2\left(\frac{1}{2} \cdot 1\right)^2$$

$$= \frac{1}{2}$$

STEP 2:

Since f is continuous at x = 0

$$f(0) = \lim_{x \to 0} f(x)$$
$$= \frac{1}{2}$$

Q3. Attempt any TWO of the following

	(4 marks each)	(8 marks)			
01.	if the f given below is conti	nuous at $x = 2$ and			
	x = 4 then find a & b				
	$f(x) = x^2 + ax + b$;	x < 2			

=
$$3x + 2$$
; $2 \le x \le 4$
= $2ax + 5b$; $4 < x$

SOLUTION :

PART – 1

STEP 1

 $\lim_{x \to 2^{-}} f(x)$ $= \lim_{x \to 2} x^{2} + ax + b$ $= 2^{2} + a(2) + b$

= 4 + 2a + b

STEP 2

 $\begin{array}{ll} \text{Lim} & f(x) \\ x \rightarrow 2 + \end{array}$

= $\lim_{x \to 2} 3x + 2$ = 3(2) + 2 = 8

STEP 3

f(2) = 3(2) + 2 = 8

STEP 4

Since	the	f	is	continuous	at	х	=	2	
-------	-----	---	----	------------	----	---	---	---	--

$ \lim_{x \to 2^{-}} f(x) $) =	Lim x→2+	f(x)	=	f(2)
4 + 2a +	b =	8		=	8	
2a + b	=	4				(1)

PART – 2

STEP 1

- $\begin{array}{ll} \text{Lim} & f(x) \\ x \rightarrow 4- \end{array}$
- $= \lim_{x \to 4} 3x + 2$

= 3(4) + 2 = 14

STEP 2

	Lim x→4+	f(x)
=	Lim x→4	2ax + 5b
=		2a(4) + 5b
=		8a + 5b
sт	EP 3	
f(4) =	3(4) + 2 = 14
sт	EP 4	
Sin	ice the	f is continuous at x = 4

Solving (1) and (2) : a = 3, b = -2

02. find f(0) if f is continuous at x = 0 where

$$f(x) = \frac{x^2}{e^x + e^{-x} - 2} ; x = 0$$

SOLUTION :

Step 1

- $\begin{array}{ll} \text{Lim} & f(x) \\ x \rightarrow 0 \end{array}$
- $= \lim_{x \to 0} \frac{x^2}{e^x + e^{-x} 2}$

$$= \lim_{x \to 0} \frac{x^2}{e^x + \frac{1}{e^x}}$$

= Lim
$$x^{2}$$

 $x \to 0$ $(e^{x})^{2} + 1 - 2.e^{x}$
 e^{x}

$$= \lim_{x \to 0} \frac{x^2}{(e^x - 1)^2}$$

$$= \lim_{x \to 0} \frac{e^{x}}{(e^{x} - 1)^{2}}$$

$$= \lim_{x \to 0} \frac{e^{x}}{\left(\frac{e^{x} - 1}{x}\right)^{2}}$$

$$= \frac{e^0}{(\log e)^2} = 1$$

Step 2

Since f is continuous at x = 0

$$f(0) = \lim_{x \to 0} f(x) = 1$$

03. find k if f is continuous at x = 1 where

$$f(x) = \frac{1 + \cos \pi x}{\pi (1 - x)^2} ; x \neq 1$$

= k ; x = 1

STEP 1

	$Lim \\ x \rightarrow 1$	f(x)
=	$\begin{array}{l} \text{Lim} \\ \text{x} \rightarrow 1 \end{array}$	$\frac{1+\cos\pi x}{\pi(1-x)^2}$
	Pu	$\mathbf{t} \mathbf{x} = 1 + \mathbf{h}$
=	Lim h→ 0	$\frac{1 + \cos \pi (1 + h)}{\pi [1 - (1 + h)]^2}$
=	Lim h→ 0	$\frac{1 + \cos(\pi + \pi h)}{\pi (1 - 1 - h)^2}$
=	Lim h→ 0	$\frac{1-\cos \pi h}{\pi h^2}$
=	Lim $h \rightarrow 0$ _	$\frac{2 \sin 2 \pi h}{2}$ πh^2
=	Lim h→ 0	$\frac{\frac{2}{\pi}}{\frac{1}{\pi}} \frac{\sin^2 \frac{\pi h}{2}}{\frac{1}{h^2}}$
=	Lim h→ 0	$\frac{2}{\pi} \left(\frac{\sin \pi h}{\frac{2}{h}} \right)^2$
=	Lim h→ 0	$\frac{\frac{2}{\pi} \left(\frac{\pi \sin \pi h}{2} \right)^2}{\frac{\pi h}{2}}$
=		$\frac{2}{\pi} \frac{\pi^2}{4}$
=		<u>π</u> 2

STEP 2

Since f is continuous at x = 1

$$f(1) = \lim_{x \to 1} f(x)$$
$$k = \frac{\pi}{2}$$

Q4.	Attempt any THREE of the following	ng
	(2 marks each)	(6 marks)

01. for a bivariate data $b_{yx} = -1.2$ and $b_{xy} = -0.3$. Find correlation coefficient between x and y

SOLUTION

$$r^{2} = byx \ x \ bxy$$

$$r^{2} = -1.2 \ x \ -0.3$$

$$r^{2} = \frac{12}{10} \ x \ \frac{3}{10}$$

$$r^{2} = \frac{36}{100}$$

$$r = \pm \frac{6}{10}$$

02. for a bivariate data ; $\overline{x} = 53$, $\overline{y} = 28$, byx = -1.5, bxy = -0.2 . Estimate of y for x = 50

SOLUTION

 $y - \overline{y} = byx(x - \overline{x})$ y - 28 = -1.5(x - 53) y - 28 = -1.5(50 - 53) y - 28 = -1.5(-3) y - 28 = 4.5y = 32.5 for x = 50

03. from the data of 20 pairs of observations on X and Y following results are obtained

 $\overline{x} = 199$; $\overline{y} = 94$; $\Sigma(x - \overline{x})^2 = 1298$ $\Sigma(y - \overline{y})^2 = 600$; $\Sigma(x - \overline{x})(y - \overline{y}) = -262$. Obtain regression coefficient bxy

by $= \frac{\Sigma(x - \overline{x})(y - \overline{y})}{\Sigma(x - x)^2}$

=	-262	LOG CALC
	1298	2.4183 - 3.1134
=	0.2018	AL 1.3049
		0.2018

04. Regression of two series are 2x - y - 15 = 0& 3x - 4y + 25 = 0 Find mean of x and y

SOLUTION

SOLUTION

	2x –	у	=		15		х	3
	3x –	4y	=	-	25		х	2
	6x –	3у	=		45			
	6x –	8y	=	-	50			
	- +			+		_		
		5y	=		95			
		У	=		19			
sub	os in (1)	x	=		17			
sut	os in (1)	x	=		17			

Q5. Attempt any TWO of the following

Q-5

(3 marks each)

01.		Sales	(crores) (x)	exp.(crores (y)	
	Mean		40	6	
	S.D		10	1.5	correlation coefficient = 0.9
	estimate	sales	for a pro	posed adv. exp	o. of ₹ 10 crores
	SOLUTIO	N <u>y</u>	on x		
		by	x = r	. <u>σγ</u>	
			= 0	$.9 \times \frac{1.5}{10}$	
			$=$ $\frac{1}{2}$. <u>35</u> .0	
			= 0	.135	
		у -	$\overline{y} = by$	x(x - x)	
		у -	- 6 = 0.	135(x - 40)	
		у -	- 6 = 0.	135x – 5.4	

- y = 0.135x 5.4 + 6
- y = 0.135x + 0.6
- Put x = 60

y = 0.135(60) + 0.6

- y = 8.1 + 0.6
- y = 8.7 Estimated adv exp. = ₹ 8.7 cr

03. Find the equation of line of regression of Y on X for the following data n = 8; $\Sigma(x - \overline{x})(y - \overline{y}) = 120$; $\overline{x} = 20$ $\overline{y} = 36$; $\sigma x = 2$ $\sigma y = 3$ **SOLUTION byx** = $\frac{\text{cov}(x, y)}{\sigma x^2}$ $\Sigma((x - \overline{x})(y - \overline{y}))$

$$= \frac{n}{\sigma x^2}$$

$$= \frac{\frac{120}{8}}{\frac{4}{4}} = \frac{15}{4} = 3.75$$

Y on X

$$y - \overline{y} = byx (x - \overline{x})$$

y - 36 = 3.75(x - 20)

$$y - 36 = 3.75x - 75$$

$$y = 3.75x - 75 + 36$$

y = 3.75x - 39

Q-5

02. for 50 students of a class the regression equation of marks in Statistics (x) on the marks in accounts (y) is 3y - 5x + 180 = 0. The mean of marks of accounts is 44 and variance of marks in Statistics is $9/16^{th}$ of the variance of marks in accounts . Find mean marks of Statistics and correlation coefficient

SOLUTION :

GIVEN: X ON Y : 3y - 5x + 180 = 0 $\overline{y} = 44$ $\frac{\sigma x^2}{\sigma y^2} = \frac{9}{16}$

STEP 1

X ON Y :
$$3y - 5x + 180 = 0$$

 $5x = 3y + 180$
 $x = \frac{3y}{5} + \frac{180}{5}$
 $bxy = \frac{3}{5}$

STEP 2

bxy = $r \cdot \frac{\sigma x}{\sigma y}$ $\frac{3}{5}$ = $r \cdot \frac{3}{4}$ $r = \frac{4}{5}$

Put y = 44 in

STEP 3

$$x = \frac{3y}{5} + \frac{180}{5}$$

$$x = \frac{3(44) + 180}{5}$$

$$x = \frac{132 + 180}{5}$$

$$x = \frac{312}{5}$$

$$x = 62.4$$

mean marks in statistics = 62.4

Q6. Attempt any TWO of the following

(4 marks each)

01. x : index of production

y : no. of unemployed (in lacs)

find regression line y on x

x	у	x – x	y – y	$(x - \overline{x})^2$	$(y - \overline{y})^2$	$(x - \overline{x})(y - \overline{y})$
100	15	- 4	0	16		0
102	12	- 2	- 3	4		6
104	13	0	- 2	0		- 0
107	11	3	- 4	9		-12
105	12	1	- 3	1		- 3
112	12	8	- 3	64		-24
103	19	- 1	4	1		- 4
99	26	- 5	11	25		-55
832	120	0	0	120		- 98 + 6 =-92
$\frac{\Sigma x}{X} = 10$	Σy)4 <u>y</u>	y = 15		$\Sigma(x-\overline{x})^2$	$\Sigma(y-\overline{y})^2$	$\Sigma(x-\overline{x})(y-\overline{y})$

by
$$x = \frac{\Sigma(x - \overline{x})(y - \overline{y})}{\Sigma(x - x)^2}$$

 $y - \overline{y} = byx(x - \overline{x})$
 $y - 15 = -0.77(x - 104)$
 $y - 15 = -0.77x + 80.08$
 $y = -0.77x + 80.08 + 15$
 $y = -0.77x + 95.08$

02.

Q-6

Information on vehicles (in thousands) passing through seven different highways during a day (X) and number of accidents reported (Y) is given as $\Sigma x = 105$; $\Sigma y = 409$; $\Sigma x^2 = 1681$; $\Sigma y^2 = 39350$ $\Sigma xy = 8075$ Obtain linear regression of Y on X

SOLUTION

$$\overline{x} = \underbrace{\Sigma x}_{n} = \underbrace{105}_{7} = 15 \qquad \overline{y} = \underbrace{\Sigma y}_{n} = \underbrace{409}_{7} = 58.43$$

$$byx = \underbrace{n\Sigma xy - \Sigma x.\Sigma y}_{n\Sigma x^{2} - (\Sigma x)^{2}}$$

$$= \underbrace{\frac{7(8075) - (105)(409)}{7(1681) - (105)^{2}}$$

$$= \underbrace{\frac{56525 - 42945}{11767 - 11025} \qquad \text{LOG CALC}$$

$$= \underbrace{13580}_{742} \longrightarrow \begin{array}{c} \text{LOG CALC} \\ 4.1329 \\ - 2.8704 \\ \text{AL } 1.2625 \\ 18.30 \end{array}$$

Equation

$$y - \overline{y} = byx (x - \overline{x})$$

 $y - 58.43 = 18.30(x - 15)$
 $y - 58.43 = 18.30x - 274.5$
 $y = 18.30x - 274.50 + 58.43$
 $y = 18.30x - 216.07$

03. the equations of two regression lines are

2x + 3y - 6 = 0 & 5x + 7y - 12 = 0Find correlation coefficient

STEP 1

ASSUME

XON Y:
$$5x + 7y - 12 = 0$$

 $5x = -7y + 12$
 $x = \frac{-7y}{5} + \frac{12}{5}$
 $bxy = -\frac{7}{5}$
Y ON X: $2x + 3y - 6 = 0$
 $3y = -2x + 6$
 $y = -\frac{2}{3}y + \frac{6}{3}$
 $byx = -\frac{2}{3}$
 $r^2 = bxy \cdot byx$

$$= \frac{-7}{4} \times \frac{-2}{3}$$
$$= \frac{14}{15}$$

Since $0 \leq r^2 \leq 1$ Our assumptions are correct

$$r = \pm \sqrt{\frac{14}{15}}$$

$$r = -\sqrt{\frac{14}{15}} \quad (byx \ bxy \ are \ -ve)$$

$$\log r' = \frac{1}{2} \left(\log 14 - \log 15 \right)$$

$$\log r' = \frac{1}{2} \left(1.1461 - 1.1761 \right)$$

$$\log r' = \frac{1.1461}{2} - \frac{1.1761}{2}$$

$$\log r' = 0.5730 - 0.5880$$

$$\log r' = \overline{1} \cdot 9850$$

$$r' = AL(\overline{1} \cdot 9850)$$

$$r' = -0.9661 \qquad r = -0.9661$$